T = 295 (2) K

 $R_{\rm int} = 0.036$

 $0.38 \times 0.25 \times 0.17 \text{ mm}$

11565 measured reflections

5280 independent reflections

3105 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triaqua[2-(4-carboxylatophenoxy)propionato- κO](1,10-phenanthroline- $\kappa^2 N, N'$)manganese(II) monohydrate

Ying-Hui Xiao,^{a,b} Li-Li Kong^a and Shan Gao^a*

^aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Qiqihar University, QiQihar 161006, People's Republic of China Correspondence e-mail: shangao67@yahoo.com

Received 26 April 2007; accepted 27 April 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.038; wR factor = 0.100; data-to-parameter ratio = 15.9.

The zwitterionic title compound, $[Mn(C_{10}H_8O_5)(C_{12}H_8N_2)-(H_2O)_3]\cdot H_2O$, has the Mn atom in an octahedral geometry that comprises the O atom of the 2-(4-carboxylatophenoxy)-propionate group, two N atoms of the 1,10-phenanthroline ligand and three water molecules. Extensive hydrogenbonding and π - π stacking interactions lead to a three-dimensional supramolecular network.

Related literature

For the cobalt(II) and nickel(II) complexes of the same carboxylic acid, see: Deng *et al.* (2007*a*,*b*).

Experimental

Crystal data	
$[Mn(C_{10}H_8O_5)(C_{12}H_8N_2)-$	c = 15.372 (3) Å
$(H_2O)_3] \cdot H_2O$	$\alpha = 106.16 \ (3)^{\circ}$
$M_r = 515.37$	$\beta = 99.53 \ (3)^{\circ}$
Triclinic, P1	$\gamma = 103.14 \ (3)^{\circ}$
a = 7.5457 (15) Å	V = 1164.8 (5) Å ³
b = 11.073 (2) Å	Z = 2

Mo $K\alpha$ radiation $\mu = 0.62 \text{ mm}^{-1}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.826, T_{\rm max} = 0.893$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.100 & \text{independent and constrained} \\ S &= 1.12 & \text{refinement} \\ 5280 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.56 \text{ e } \text{ Å}^{-3} \\ 332 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.73 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1	2.1318 (19)	Mn1-O3W	2.204 (2)
Mn1-O2W	2.156 (2)	Mn1-N1	2.290 (2)
Mn1-O1W	2.174 (2)	Mn1-N2	2.292 (2)
$\begin{array}{c} 01 - Mn1 - O2W \\ 01 - Mn1 - O1W \\ 02W - Mn1 - O1W \\ 01 - Mn1 - O3W \\ 02W - Mn1 - O3W \\ 01W - Mn1 - O3W \\ 01 - Mn1 - N1 \\ 02W - Mn1 - N1 \end{array}$	108.33 (8)	O1W-Mn1-N1	90.74 (10)
	83.81 (9)	O3W-Mn1-N1	98.24 (9)
	90.70 (8)	O1-Mn1-N2	88.65 (9)
	85.06 (9)	O2W-Mn1-N2	162.90 (8)
	167.32 (8)	O1W-Mn1-N2	98.30 (9)
	159.22 (8)	O3W-Mn1-N2	92.97 (9)
	91.18 (8)	N1-Mn1-N2	72.27 (9)

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1W1\cdots O5^{i}$	0.84 (4)	1.92 (4)	2.754 (3)	170 (3)
$O1W - H1W2 \cdot \cdot \cdot O4W^{ii}$	0.83 (4)	1.96 (4)	2.774 (4)	168 (4)
$O2W - H2W1 \cdots O3^{i}$	0.83 (4)	2.03 (4)	2.847 (3)	167 (3)
$O2W - H2W2 \cdot \cdot \cdot O4^{iii}$	0.90 (4)	1.73 (4)	2.634 (3)	173 (3)
O3W−H3W1···O5 ⁱⁱⁱ	0.90 (3)	1.87 (3)	2.759 (3)	170 (3)
O3W−H3W2···O2	0.85(3)	1.82 (3)	2.647 (3)	163 (3)
$O4W - H4W1 \cdots O2$	0.91 (4)	1.85 (4)	2.744 (3)	168 (4)
$O4W-H4W2\cdots O4^{iv}$	0.85 (4)	2.08 (4)	2.925 (3)	171 (4)
Symmetry codes: (i) -x + 1, -y + 2, -z + 2.	x, y - 1, z; (ii	i) $x + 1, y, z;$	(iii) $x - 1$,	y - 1, z; (iv)

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036), and Heilongjiang University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2262).

References

Deng, Z.-P., Gao, S. & Chen, P.-G. (2007a). Acta Cryst. E63, m296–m298.
Deng, Z.-P., Gao, S. & Chen, P.-G. (2007b). Acta Cryst. E63, m553–m554.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National

Laboratory, Tennessee, USA.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m1587-m1588 [doi:10.1107/S1600536807021101]

$\label{eq:carboxylatophenoxy} Triaqua [2-(4-carboxylatophenoxy) propionato-κO](1,10-phenanthroline-$\kappa^2 N,N'$) manganese(II) monohydrate$

Y.-H. Xiao, L.-L. Kong and S. Gao

Comment

Our studies have addressed the metal derivatives of carboxyphenoxypropionic acids for the construction of supramolecular architectures. ecently, we have reported the structures of cobalt(II) and nickel(II) derivatives of 2-(4carboxylatophenoxy)propionic acid (Deng *et al.*, 2007*a*,b). In the title Mn complex (I) (Fig. 1), the 2-(*p*-CPOP)²⁻ anion coordinates in a monodentate fashion to the Mn atom through the carboxylate group. The Mn atom is chelated by the phenanthroline and is also linked to three water molecules. A three-dimensional supramolecular network is constructed from π - π stacking between the 1,10-phenanthroline rings (centroid-centroid distance being 3.689 (5) and 3.869 (5) Å) and hydrogenbonding interactions (Table 2).

Experimental

The title complex was prepared by the addition of $MnCl_2 \cdot 4H_2O(10 \text{ mmol})$ and 1,10-phenanthroline (10 mmol) to a solution of 2-(*p*-CPOPH₂) (15 mmol) in H₂O/MeOH (V/V = 1:1) solution. The pH value was adjusted to 5 with NaOH (0.2 *M*) solution. Colorless crystals were obtained from the filtered solution at room temperature over several days. CH&N analysis. Calc. for C₂₂H₂₄N₂O₉Mn: C 51.27, H 4.69, N 5.43. Found: C 51.26, H 4.67, N 5.46%.

Refinement

The H atoms were placed in calculated positions with C—H = 0.93 or 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ and were included in the refinement in the riding model approximation. The H atoms of water molecules and hydroxyl groups were located in difference Fourier maps and refined with the O—H distance restrained to 0.85 (1) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compound with 30% probability ellipsoid for the non-H atoms. Dashed lines indicate O—H…O hydrogen bonds.

Triaqua[2-(4-carboxylatophenoxy)propionato- κ O](1,10-phenanthroline- $\kappa^2 N$,N')manganese(II) monohydrate

Crystal data [Mn(C₁₀H₈O₅)(C₁₂H₈N₂)(H₂O)₃]·H₂O Z = 2

$M_r = 515.37$	$F_{000} = 534$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.469 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.5457 (15) Å	Cell parameters from 7678 reflections
b = 11.073 (2) Å	$\theta = 3.3 - 27.5^{\circ}$
c = 15.372 (3) Å	$\mu = 0.62 \text{ mm}^{-1}$
$\alpha = 106.16 \ (3)^{\circ}$	T = 295 (2) K
$\beta = 99.53 \ (3)^{\circ}$	Prism, colourless
$\gamma = 103.14 \ (3)^{\circ}$	$0.38 \times 0.25 \times 0.17 \text{ mm}$
$V = 1164.8 (5) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer	5280 independent reflections
Radiation source: fine-focus sealed tube	3105 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.3^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -14 \rightarrow 14$
$T_{\min} = 0.826, T_{\max} = 0.893$	$l = -19 \rightarrow 19$
11565 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_0^2) + (0.0275P)^2 + 0.6167P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\text{max}} = 0.001$
5280 reflections	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
332 parameters	$\Delta \rho_{\rm min} = -0.73 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

methods

Fractional	atomic	coordinates	and i	isotropi	c or e	eauivalent	isotron	oic dis	placement	narameters	$(Å^2$)
1 / actionat	aiomic	coordinates	unu i	sonopu		guivaieni	isonop	ne ans	pracement	parameters	(44)	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.27669 (6)	0.37228 (4)	0.71204 (3)	0.03294 (13)
O1W	0.5797 (3)	0.4182 (2)	0.75865 (16)	0.0471 (5)
H1W1	0.624 (5)	0.362 (3)	0.774 (2)	0.071*
H1W2	0.633 (5)	0.493 (4)	0.796 (3)	0.071*

O2W	0.2654 (3)	0.3051 (2)	0.83041 (14)	0.0432 (5)
H2W1	0.353 (5)	0.286 (3)	0.859 (2)	0.065*
H2W2	0.170 (5)	0.286 (3)	0.857 (2)	0.065*
O3W	-0.0264 (3)	0.34586 (19)	0.69778 (14)	0.0385 (5)
H3W1	-0.086 (4)	0.309 (3)	0.734 (2)	0.058*
H3W2	-0.026 (5)	0.426 (3)	0.717 (2)	0.058*
O4W	-0.1908 (3)	0.6600(2)	0.88034 (17)	0.0560 (6)
H4W1	-0.098 (6)	0.649 (4)	0.851 (3)	0.084*
H4W2	-0.146 (6)	0.686 (4)	0.939 (3)	0.084*
01	0.3311 (3)	0.58037 (17)	0.75925 (14)	0.0424 (5)
O2	0.0499 (3)	0.60400 (18)	0.76959 (15)	0.0479 (5)
O3	0.5231 (3)	1.20164 (16)	0.92263 (13)	0.0364 (4)
O4	1.0045 (3)	1.2598 (2)	0.92143 (14)	0.0485 (5)
O5	0.7683 (3)	1.25399 (18)	0.81085 (13)	0.0425 (5)
N1	0.2598 (3)	0.1668 (2)	0.61862 (15)	0.0386 (6)
N2	0.2602 (3)	0.3778 (2)	0.56302 (16)	0.0424 (6)
C1	0.2238 (4)	0.6494 (2)	0.78069 (18)	0.0343 (6)
C2	0.3088 (4)	0.7955 (2)	0.82068 (18)	0.0334 (6)
C3	0.5007 (4)	0.8509 (2)	0.84896 (18)	0.0355 (6)
Н3	0.5789	0.7967	0.8443	0.043*
C4	0.5795 (4)	0.9867 (3)	0.88444 (19)	0.0366 (6)
H4	0.7091	1.0229	0.9028	0.044*
C5	0.4628 (4)	1.0666 (2)	0.89205 (17)	0.0306 (6)
C6	0.2693 (4)	1.0124 (3)	0.8677 (2)	0.0382 (7)
H6	0.1911	1.0665	0.8754	0.046*
C7	0.1938 (4)	0.8781 (3)	0.8321 (2)	0.0382 (7)
H7	0.0641	0.8420	0.8153	0.046*
C8	0.7194 (4)	1.2660 (2)	0.96311 (18)	0.0332 (6)
H8	0.7654	1.2279	1.0096	0.040*
С9	0.7334 (4)	1.4088 (3)	1.0117 (2)	0.0434 (7)
H9A	0.6928	1.4472	0.9661	0.065*
H9B	0.8612	1.4559	1.0448	0.065*
Н9С	0.6549	1.4135	1.0550	0.065*
C10	0.8382 (4)	1.2573 (2)	0.89161 (19)	0.0332 (6)
C11	0.2577 (5)	0.4808 (3)	0.5357 (2)	0.0569 (9)
H11	0.2552	0.5577	0.5790	0.068*
C12	0.2588 (5)	0.4788 (4)	0.4442 (3)	0.0722 (11)
H12	0.2587	0.5533	0.4275	0.087*
C13	0.2601 (5)	0.3666 (4)	0.3804 (2)	0.0705 (11)
H13	0.2611	0.3640	0.3195	0.085*
C14	0.2599 (5)	0.2548 (4)	0.4058 (2)	0.0551 (9)
C15	0.2562 (5)	0.1317 (5)	0.3425 (2)	0.0727 (11)
H15	0.2568	0.1249	0.2809	0.087*
C16	0.2517 (6)	0.0256 (4)	0.3689 (2)	0.0722 (11)
H16	0.2492	-0.0529	0.3256	0.087*
C17	0.2506 (5)	0.0323 (3)	0.4632 (2)	0.0529 (8)
C18	0.2449 (5)	-0.0746 (3)	0.4952 (3)	0.0653 (10)
H18	0.2390	-0.1559	0.4543	0.078*
C19	0.2480 (5)	-0.0595 (3)	0.5858 (3)	0.0641 (10)
		. /		× /

supplementary materials

H19	0.2452	-0.1298	0.6079	0.077*
C20	0.2553 (5)	0.0628 (3)	0.6457 (2)	0.0523 (8)
H20	0.2572	0.0720	0.7079	0.063*
C21	0.2571 (4)	0.1526 (3)	0.52810 (18)	0.0395 (7)
C22	0.2592 (4)	0.2654 (3)	0.49881 (19)	0.0407 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0368 (3)	0.0277 (2)	0.0340 (2)	0.00985 (18)	0.00952 (18)	0.00888 (18)
O1W	0.0373 (13)	0.0414 (12)	0.0608 (14)	0.0123 (10)	0.0063 (11)	0.0165 (11)
O2W	0.0430 (14)	0.0543 (13)	0.0474 (12)	0.0224 (11)	0.0180 (10)	0.0291 (11)
O3W	0.0381 (12)	0.0318 (10)	0.0457 (12)	0.0092 (9)	0.0120 (9)	0.0123 (10)
O4W	0.0417 (15)	0.0607 (15)	0.0568 (14)	0.0119 (12)	0.0060 (12)	0.0115 (13)
01	0.0402 (12)	0.0265 (10)	0.0585 (13)	0.0100 (9)	0.0148 (10)	0.0090 (9)
O2	0.0359 (13)	0.0308 (10)	0.0685 (14)	0.0059 (9)	0.0089 (11)	0.0086 (10)
O3	0.0350 (11)	0.0247 (9)	0.0492 (11)	0.0085 (8)	0.0103 (9)	0.0118 (9)
O4	0.0355 (13)	0.0656 (14)	0.0499 (12)	0.0150 (11)	0.0133 (10)	0.0253 (11)
O5	0.0472 (13)	0.0460 (11)	0.0385 (11)	0.0160 (10)	0.0134 (10)	0.0166 (10)
N1	0.0442 (15)	0.0344 (13)	0.0342 (12)	0.0113 (11)	0.0091 (11)	0.0070 (11)
N2	0.0449 (16)	0.0479 (15)	0.0378 (13)	0.0128 (12)	0.0085 (11)	0.0207 (13)
C1	0.0390 (17)	0.0281 (14)	0.0371 (15)	0.0102 (13)	0.0097 (13)	0.0123 (12)
C2	0.0384 (17)	0.0299 (14)	0.0348 (14)	0.0086 (12)	0.0111 (13)	0.0149 (12)
C3	0.0361 (17)	0.0294 (14)	0.0440 (16)	0.0115 (12)	0.0142 (13)	0.0127 (13)
C4	0.0306 (16)	0.0316 (14)	0.0488 (16)	0.0079 (12)	0.0121 (13)	0.0145 (13)
C5	0.0367 (16)	0.0245 (13)	0.0331 (14)	0.0088 (12)	0.0126 (12)	0.0112 (12)
C6	0.0366 (17)	0.0301 (14)	0.0541 (17)	0.0143 (13)	0.0159 (14)	0.0166 (14)
C7	0.0299 (16)	0.0311 (14)	0.0542 (18)	0.0077 (12)	0.0072 (13)	0.0180 (14)
C8	0.0320 (16)	0.0276 (13)	0.0355 (14)	0.0048 (12)	0.0055 (12)	0.0080 (12)
C9	0.050 (2)	0.0333 (15)	0.0421 (16)	0.0116 (14)	0.0123 (14)	0.0056 (13)
C10	0.0365 (17)	0.0235 (13)	0.0372 (15)	0.0057 (12)	0.0081 (13)	0.0091 (12)
C11	0.065 (2)	0.059 (2)	0.0528 (19)	0.0197 (18)	0.0097 (17)	0.0297 (18)
C12	0.076 (3)	0.084 (3)	0.068 (2)	0.019 (2)	0.006 (2)	0.052 (2)
C13	0.062 (3)	0.107 (3)	0.044 (2)	0.015 (2)	0.0071 (18)	0.036 (2)
C14	0.046 (2)	0.082 (2)	0.0347 (16)	0.0144 (18)	0.0073 (15)	0.0201 (18)
C15	0.065 (3)	0.108 (3)	0.0323 (18)	0.022 (2)	0.0141 (17)	0.006 (2)
C16	0.074 (3)	0.081 (3)	0.044 (2)	0.028 (2)	0.0130 (19)	-0.010 (2)
C17	0.044 (2)	0.058 (2)	0.0418 (17)	0.0126 (16)	0.0072 (15)	-0.0031 (16)
C18	0.066 (3)	0.045 (2)	0.069 (2)	0.0215 (18)	0.009 (2)	-0.0064 (19)
C19	0.075 (3)	0.0363 (18)	0.075 (2)	0.0192 (17)	0.010 (2)	0.0101 (18)
C20	0.071 (2)	0.0362 (17)	0.0478 (18)	0.0167 (16)	0.0122 (17)	0.0106 (15)
C21	0.0330 (17)	0.0440 (16)	0.0319 (15)	0.0068 (13)	0.0059 (12)	0.0024 (14)
C22	0.0306 (16)	0.0554 (19)	0.0320 (14)	0.0091 (14)	0.0082 (12)	0.0105 (14)

Geometric parameters (Å, °)

Mn1—O1	2.1318 (19)	C5—C6	1.389 (4)
Mn1—O2W	2.156 (2)	C6—C7	1.376 (4)
Mn1—O1W	2.174 (2)	С6—Н6	0.9300

Mn1—O3W	2.204 (2)	С7—Н7	0.9300
Mn1—N1	2.290 (2)	C8—C9	1.521 (4)
Mn1—N2	2.292 (2)	C8—C10	1.526 (4)
O1W—H1W1	0.84 (4)	С8—Н8	0.9800
O1W—H1W2	0.83 (4)	С9—Н9А	0.9600
O2W—H2W1	0.83 (4)	С9—Н9В	0.9600
O2W—H2W2	0.90 (4)	С9—Н9С	0.9600
O3W—H3W1	0.90 (3)	C11—C12	1.402 (5)
O3W—H3W2	0.85 (3)	C11—H11	0.9300
O4W—H4W1	0.91 (4)	C12—C13	1.354 (5)
O4W—H4W2	0.85 (4)	C12—H12	0.9300
01—C1	1.256 (3)	C13—C14	1.398 (5)
O2—C1	1.257 (3)	С13—Н13	0.9300
O3—C5	1.375 (3)	C14—C22	1.403 (4)
O3—C8	1.435 (3)	C14—C15	1.429 (5)
O4—C10	1.253 (3)	C15—C16	1.340 (5)
O5—C10	1.253 (3)	C15—H15	0.9300
N1—C20	1.324 (3)	C16—C17	1.432 (5)
N1—C21	1.352 (3)	C16—H16	0.9300
N2—C11	1.322 (4)	C17—C18	1.397 (5)
N2—C22	1.354 (4)	C17—C21	1.410 (4)
C1—C2	1.501 (4)	C18—C19	1.352 (5)
C2—C3	1.379 (4)	C18—H18	0.9300
C2—C7	1.393 (4)	C19—C20	1.393 (4)
C3—C4	1.393 (4)	С19—Н19	0.9300
С3—Н3	0.9300	C20—H20	0.9300
C4—C5	1 380 (4)	C21—C22	1 439 (4)
C4—H4	0.9300	021 022	1.109 (1)
O1 Mm1 O2W	109 22 (9)	C2 C7 H7	110.5
O1 = Mn1 = O2W	108.55(8)	$C_2 = C_1 = H_1$	119.5
O_{1} Min O_{1} O_{1} W	85.81 (9) 85.84 (0)	03 - 03 - 03 - 03	103.4(2)
$O_2 W = M m_1 = O_1 W$	65.64 (9) 00.70 (9)	$C_{0} = C_{0} = C_{10}$	113.0(2)
O_{1} Min O_{2} W	90.70 (8)	$C_{2} = C_{3} = C_{10}$	109.8 (2)
02W = Min1 = 03W	85.06 (9)		109.3
$O1 = M\pi 1 = O3 W$	167.32 (8)	C10 C2 H2	109.3
OI-MII-NI	159.22 (8)		109.3
O2W—Mn1—N1	91.18 (8)	C8—C9—H9A	109.5
Olw-Mil-NI	90.74 (10)	С8—С9—Н9В	109.5
$O_3 W = Mn1 = N1$	98.24 (9)	Н9А—С9—Н9В	109.5
OI-MnI-N2	88.65 (9)	С8—С9—Н9С	109.5
O2W—Mn1—N2	162.90 (8)	H9A—C9—H9C	109.5
O1W - Mn1 - N2	98.30 (9)	H9B—C9—H9C	109.5
O_3W —Mn1—N2	92.97 (9)	05-010-04	125.3 (3)
NI—MnI—N2	72.27 (9)	05-010-08	119.3 (3)
Mn1—O1W—H1W1	118 (2)	04	115.4 (2)
Mn1—O1W—H1W2	115 (3)	N2—C11—C12	122.7 (3)
HIW1—OIW—HIW2	111 (4)	N2—C11—H11	118.6
Mn1—O2W—H2W1	124 (2)	C12—C11—H11	118.6
Mn1—O2W—H2W2	130 (2)	C13—C12—C11	119.0 (3)
H2W1—O2W—H2W2	105 (3)	C13—C12—H12	120.5

supplementary materials

Mn1—O3W—H3W1	120 (2)	C11—C12—H12	120.5
Mn1—O3W—H3W2	100 (2)	C12—C13—C14	120.3 (3)
H3W1—O3W—H3W2	105 (3)	С12—С13—Н13	119.9
H4W1—O4W—H4W2	110 (4)	C14—C13—H13	119.9
C1—O1—Mn1	130.21 (18)	C13—C14—C22	117.0 (3)
C5—O3—C8	118.4 (2)	C13—C14—C15	124.0 (3)
C20—N1—C21	117.9 (2)	C22—C14—C15	119.0 (3)
C20—N1—Mn1	125.92 (19)	C16—C15—C14	122.3 (3)
C21—N1—Mn1	116.17 (18)	C16—C15—H15	118.9
C11—N2—C22	118.1 (3)	C14—C15—H15	118.9
C11—N2—Mn1	126.1 (2)	C15—C16—C17	120.5 (3)
C22—N2—Mn1	115.78 (17)	C15—C16—H16	119.8
O1—C1—O2	124.3 (2)	С17—С16—Н16	119.8
O1—C1—C2	117.6 (3)	C18—C17—C21	117.6 (3)
O2—C1—C2	118.1 (2)	C18—C17—C16	123.5 (3)
C3—C2—C7	118.6 (2)	C21—C17—C16	119.0 (3)
C3—C2—C1	121.2 (3)	C19—C18—C17	119.8 (3)
C7—C2—C1	120.2 (3)	C19—C18—H18	120.1
C2—C3—C4	121.1 (3)	C17—C18—H18	120.1
С2—С3—Н3	119.4	C18—C19—C20	119.1 (3)
С4—С3—Н3	119.4	C18—C19—H19	120.4
C5—C4—C3	119.2 (3)	С20—С19—Н19	120.4
С5—С4—Н4	120.4	N1—C20—C19	123.4 (3)
C3—C4—H4	120.4	N1-C20-H20	118.3
O3—C5—C4	124.8 (2)	С19—С20—Н20	118.3
O3—C5—C6	114.9 (2)	N1—C21—C17	122.3 (3)
C4—C5—C6	120.4 (2)	N1—C21—C22	117.6 (2)
C7—C6—C5	119.6 (3)	C17—C21—C22	120.1 (3)
С7—С6—Н6	120.2	N2-C22-C14	122.8 (3)
С5—С6—Н6	120.2	N2-C22-C21	118.0 (2)
C6—C7—C2	121.0 (3)	C14—C22—C21	119.2 (3)
С6—С7—Н7	119.5		
O2W—Mn1—O1—C1	-76.5 (2)	C5—O3—C8—C9	-165.6 (2)
O1W—Mn1—O1—C1	-160.0 (2)	C5—O3—C8—C10	74.1 (3)
O3W—Mn1—O1—C1	8.5 (2)	O3—C8—C10—O5	31.7 (3)
N1—Mn1—O1—C1	124.4 (3)	C9—C8—C10—O5	-86.1 (3)
N2—Mn1—O1—C1	101.5 (2)	O3—C8—C10—O4	-151.2 (2)
O1—Mn1—N1—C20	157.5 (3)	C9—C8—C10—O4	91.0 (3)
O2W—Mn1—N1—C20	-2.7 (3)	C22—N2—C11—C12	-1.6 (5)
O1W—Mn1—N1—C20	83.2 (3)	Mn1—N2—C11—C12	176.0 (3)
O3W—Mn1—N1—C20	-87.9 (3)	N2-C11-C12-C13	0.8 (6)
N2—Mn1—N1—C20	-178.4 (3)	C11-C12-C13-C14	0.1 (6)
O1—Mn1—N1—C21	-21.4 (4)	C12-C13-C14-C22	-0.3 (5)
O2W—Mn1—N1—C21	178.4 (2)	C12-C13-C14-C15	178.3 (4)
O1W—Mn1—N1—C21	-95.8 (2)	C13-C14-C15-C16	-178.4 (4)
O3W—Mn1—N1—C21	93.2 (2)	C22-C14-C15-C16	0.1 (6)
N2—Mn1—N1—C21	2.71 (19)	C14—C15—C16—C17	0.0 (6)
O1—Mn1—N2—C11	-9.4 (3)	C15—C16—C17—C18	179.6 (4)
O2W—Mn1—N2—C11	164.1 (3)	C15-C16-C17-C21	-0.9 (5)

O1W—Mn1—N2—C11	-92.9 (3)	C21—C17—C18—C19	-0.8 (5)
O3W—Mn1—N2—C11	81.3 (3)	C16—C17—C18—C19	178.7 (4)
N1—Mn1—N2—C11	179.0 (3)	C17—C18—C19—C20	0.5 (6)
O1—Mn1—N2—C22	168.3 (2)	C21—N1—C20—C19	0.0 (5)
O2W—Mn1—N2—C22	-18.2 (4)	Mn1—N1—C20—C19	-178.9 (3)
O1W—Mn1—N2—C22	84.8 (2)	C18—C19—C20—N1	-0.1 (6)
O3W—Mn1—N2—C22	-101.0 (2)	C20-N1-C21-C17	-0.3 (4)
N1—Mn1—N2—C22	-3.33 (19)	Mn1—N1—C21—C17	178.7 (2)
Mn1—O1—C1—O2	-6.8 (4)	C20—N1—C21—C22	179.1 (3)
Mn1—O1—C1—C2	174.23 (16)	Mn1—N1—C21—C22	-1.9 (3)
O1—C1—C2—C3	-11.7 (4)	C18—C17—C21—N1	0.7 (5)
O2—C1—C2—C3	169.3 (2)	C16—C17—C21—N1	-178.8 (3)
O1—C1—C2—C7	169.9 (2)	C18—C17—C21—C22	-178.7 (3)
O2—C1—C2—C7	-9.1 (4)	C16—C17—C21—C22	1.8 (5)
C7—C2—C3—C4	-2.8 (4)	C11—N2—C22—C14	1.4 (4)
C1—C2—C3—C4	178.8 (2)	Mn1—N2—C22—C14	-176.4 (2)
C2—C3—C4—C5	0.6 (4)	C11—N2—C22—C21	-178.5 (3)
C8—O3—C5—C4	-10.1 (4)	Mn1—N2—C22—C21	3.7 (3)
C8—O3—C5—C6	170.2 (2)	C13—C14—C22—N2	-0.5 (5)
C3—C4—C5—O3	-177.5 (2)	C15—C14—C22—N2	-179.1 (3)
C3—C4—C5—C6	2.2 (4)	C13-C14-C22-C21	179.4 (3)
O3—C5—C6—C7	177.0 (2)	C15-C14-C22-C21	0.8 (5)
C4—C5—C6—C7	-2.8 (4)	N1-C21-C22-N2	-1.2 (4)
C5—C6—C7—C2	0.5 (4)	C17—C21—C22—N2	178.2 (3)
C3—C2—C7—C6	2.3 (4)	N1-C21-C22-C14	178.9 (3)
C1—C2—C7—C6	-179.3 (2)	C17—C21—C22—C14	-1.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$			
O1W—H1W1···O5 ⁱ	0.84 (4)	1.92 (4)	2.754 (3)	170 (3)			
O1W—H1W2···O4W ⁱⁱ	0.83 (4)	1.96 (4)	2.774 (4)	168 (4)			
O2W—H2W1···O3 ⁱ	0.83 (4)	2.03 (4)	2.847 (3)	167 (3)			
O2W—H2W2···O4 ⁱⁱⁱ	0.90 (4)	1.73 (4)	2.634 (3)	173 (3)			
O3W—H3W1···O5 ⁱⁱⁱ	0.90 (3)	1.87 (3)	2.759 (3)	170 (3)			
O3W—H3W2…O2	0.85 (3)	1.82 (3)	2.647 (3)	163 (3)			
O4W—H4W1…O2	0.91 (4)	1.85 (4)	2.744 (3)	168 (4)			
O4W—H4W2···O4 ^{iv}	0.85 (4)	2.08 (4)	2.925 (3)	171 (4)			
Symmetry codes: (i) <i>x</i> , <i>y</i> -1, <i>z</i> ; (ii) <i>x</i> +1, <i>y</i> , <i>z</i> ; (iii) <i>x</i> -1, <i>y</i> -1, <i>z</i> ; (iv) - <i>x</i> +1, - <i>y</i> +2, - <i>z</i> +2.							

